1.Bi/BiOCl光催化剂的可控制备;2.光催化剂的表征和光电性能测试;3.可见光光催化降解实验及机理研究
毕业设计(论文)题目:
Bi/BiOCl复合光催化剂的制备表征及性能研究
一、毕业设计(论文)内容及要求(包括原始数据、技术要求、达到的指标和应做的实验等)
1.Bi/BiOCl光催化剂的可控制备;
2.光催化剂的表征和光电性能测试;
3.可见光光催化降解实验及机理研究;
二、完成后应交的作业(包括各种说明书、图纸等)
1. 毕业设计论文一份(不少于1.5万字);
2. 外文译文一篇(不少于5000英文单词)。
三、完成日期及进度
自2017年2月27日起至2017年6月2日止,共14周。进度安排:
2.27~3.10 文献检索与阅读;
3.13~5.19 设计与实验;
5.22~5.26 撰写论文;
5.29~6.2 论文评阅及答辩。
四、主要参考资料(包括书刊名称、出版年月等):
[1] Chen, X., Selloni, A. Introduction: titanium dioxide (TiO2) nanomaterials. Chemical Reviews 2014, 114(19): 9281-9282.
[2] Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials 2009, 8(1): 76-80.
[3] Zheng, Y., Lin., L. H. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angewandte Chemie-International Edition 2015, 54(44): 12868-12884.
[4] Maeda, K.; Kuriki, R.; Zhang, M. W.; Wang, X. C.; Ishitani, O., The effect of the pore-wall structure of carbon nitride on photocatalytic CO2 reduction under visible light. Journal of Material Chemistry A 2014, 2(36): 15146-15151.
[5] Cui, Y. J., Zhang, G. G. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B-Environmental 2016, 181: 413-419.
[6] Zheng, D. D., Pang, C. Y. Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chemical Communications 2015, 51(47): 9706-9709.
[7] Wang, W., Yu, J. C., Shen, Z., Chan, D. L., Gu, T. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chemical Communications 2014, 50(70): 10148-10150.
[8] Chen, F. G., Yu, Y., Zhou, Y., Zheng Y., Hao, S. The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance. Chemical Communications 2015, 51(2): 425-427.
[9] Su, J. Y., Geng, P., Li, X. Y., Zhao, Q. D., Quan, X., Chen, G. H. Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance. Nanoscale 2015, 7 (39), 16282-16289.
[10] Xu, H., Zhao, H. Z., Song, Y. H, Yan, W., Xu, Y. G. g-C3N4/Ag3PO4 composites with synergistic effect for increased photocatalytic activity under the visible light irradiation. Material Science Semiconductor Process 2015, 39, 726-734.
[11] Zhang, W., Sun, Y., Dong, F., Zhang, W., Duan, S., Zhang, Q. Facile synthesis of organic inorganic layered nanojunctions of g-C3N4/(BiO)2CO3 as efficient visible light photocatalyst. Dalton Transactions 2014, 43(31): 12026-12036.
[12] Ye, L., Liu, J., Jiang, Z., Peng, T., Zan, L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Applied Catalysis B-Environmental 2013, 142: 1-7.
[13] Li, Q. B., Zhao, X., Yang, J., Jia, C. J., Jin, Z., Fan, W. L. Exploring the effects of nanocrystal facet orientations in g-C3N4/BiOCl heterostructures on photocatalytic performance. Nanoscale 2015, 7 (45), 18971-18983.