[12] K. Sugihara, M. Asamoto, Y. Itagaki, T. Takemasa, S. Yamaguchi, Y. Sadaoka,et al., A quantitative analysis of influence of Ni particle size of SDC-supported anode on SOFC performance: effect of p
[12] K. Sugihara, M. Asamoto, Y. Itagaki, T. Takemasa, S. Yamaguchi, Y. Sadaoka,et al., A quantitative analysis of influence of Ni particle size of SDC-supported anode on SOFC performance: effect of particle size of SDC support, Solid State Ionics 262 (2014) 433–437
[13] X. Zhang, M. Robertson, C. Deces-Petit, W. Qu, O. Kesler, R. Maric, et al., Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte, J. Power Sources 164 (2007) 668–677
[14] X.H. Fang, G.Y. Zhu, C.R. Xia, X.Q. Liu, G.Y. Meng, Synthesis and properties of Ni– SDC cermets for IT–SOFC anode by co-precipitation, Solid State Ionics 168 (2004) 31–36.
[15] C.D. Ding, K. Sato, J. Mizusaki, T. Hashida, A comparative study of NiO– Ce0.9Gd0.1O1.95 nanocomposite powders synthesized by hydroxide and oxalate co-precipitation methods, Ceram. Int. 38 (2012) 85–92
[16] S. Suda, S. Takahashi, M. Kawano, H. Yoshida, T. Inagaki, Effects of atomization conditions on morphology and SOFC anode performance of spray pyrolyzed NiO–Sm0.2Ce0.8O1.9 composite particles, Solid State Ionics 177 (2006) 1219–1225.
[17] W.P. Sun, L.T. Yan, B. Lin, S.Q. Zhang, W. Liu, High performance protonconducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3-deltaCe0.8Sm0.2O2-delta composite cathode, J. Power Sources 195 (2010)
[18] W.Y. Tan, L.D. Fan, R. Raza, M.A. Khan, B. Zhu, Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria–carbonate composite electrolyte, Int. J. Hydrogen Energy 38 (2013) 370–376
[19] W.P. Sun, L.T. Yan, B. Lin, S.Q. Zhang, W. Liu, High performance protonconducting solid oxide fuel cells with a stable Sm0.5Sr0.5Co3-deltaCe0.8Sm0.2O2-delta composite cathode, J. Power Sources 195 (2010) 3155–3158
[20] H. Iwai, N. Shikazono, T. Matsui, H. Teshima, M. Kishimoto, R. Kishida, et al.,Quantification of SOFC anode microstructure based on dual beam FIB–SEM technique, J. Power Sources 195 (2010) 955–961
[21] A. Kumar, F. Ciucci, A.N. Morozovska, S.V. Kalinin, S. Jesse, Measuring oxygen reduction/evolution reactions on the nanoscale, Nat. Chem. 3 (2011) 707–713
C. Zhang, M.E. Grass, A.H. McDaniel, S.C. Decaluwe, F.E. Gabaly, Z. Liu, et al., Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy, Nat. Mater. 9 (2010) 944–949
[22] M. Kishimoto, M. Lomberg, E. Ruiz-Trejo, N.P. Brandon, Enhanced triple-phase boundary density in infiltrated electrodes for solid oxide fuel cells demonstrated by high-resolution tomography, J. Power Sources 266 (2014) 291–295
[23] R. Davis, F. Abdeljawad, J. Lillibridge, M. Haataja, Phase wettability and microstructural evolution in solid oxide fuel cell anode materials, Acta Mater. 78 (2014) 271–281
[24] M. Mamak, N. Coombs, G. Ozin, Self-assembling solid oxide fuel cell materials: mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions, J. Am.Chem. Soc. 122 (2000) 8932–8939.