可见光驱动Bi2S3@ZIF-8核壳异质结构和协同光催化机理

ZIF-8粒子已成功嵌入Bi2S3纳米棒表面,产生异质结构的Bi2S3@ ZIF-8光催化剂。


摘要:可见光驱动的有机转换以其低成本、相对安全、环境友好等优点受到人们的广泛关注。在本论文中,研究了一系列使用简单有效的自组装方法来制备Bi2S3 @ ZIF-8核壳异质结构。在可见光照射下使用罗丹明B(RhB)光催化降解来评价其光催化活性,结果表明,与原始的Bi2S3纳米棒相比,核壳Bi2S3 @ ZIF-8异质结构能够显着提高室温下的光催化效率。此外,Bi:Zn摩尔比为1:10的Bi2S3 @ ZIF-8复合材料在降解实验后表现出良好的结构稳定性,并且其光催化活性经过5次循环测试仍保持在95%左右。由于Bi2S3和ZIF-8的组合作用,改进的光催化性能可归因于更大的比表面积,更高的光吸收以及更高效的光生电子空穴对分离。此外,还研究了协同光催化机理。

关键词: 核壳异质结构;光催化活性;纳米棒;协同光催化机理

A visible-light driven Bi2S3@ZIF-8 core–shell heterostructure and synergistic photocatalysis mechanism

Abstract: Visible light-driven organic conversion has attracted widespread attention due to its low cost, relative safety, and environmental friendliness. In this paper, a series of simple and effective self-assembly processes were used to prepare Bi2S3 @ ZIF-8 core-shell heterostructures. The photocatalytic activity of RhB was evaluated by photocatalytic degradation under visible light irradiation. The results show that the core-shell Bi2S3 @ ZIF-8 heterostructure can significantly increase the room temperature temperature compared with the original Bi2S3 nanorods. Photocatalytic efficiency. In addition, the Bi2S3 @ ZIF-8 composite with a Bi:Zn molar ratio of 1:10 showed good structural stability after the degradation experiment, and its photocatalytic activity remained at about 95% after five cycles of testing. Due to the combined action of Bi2S3 and ZIF-8, the improved photocatalytic performance can be attributed to greater specific surface area, higher light absorption and more efficient photogenerated electron hole pair separation. In addition, a synergistic photocatalytic mechanism has also been studied.

KeyWords:Core-shell Heterostructures; Photocatalytic Activity; Nanorods; Synergistic Photocatalytic Mechanism

目  录

摘要 IV

Abstract IV

1  文献综述 1

1.1  引言 1

1.2  骨架类材料的发展 1

1.2.1  沸石分子筛 1

1.2.2  金属有机骨架材料 2

1.2.3  沸石眯唑骨架材料 3

1.3  半导体纳米材料 5

1.4  纳米硫化物 6

1.4.1  纳米硫化物半导体的研究现状 6

1.4.2  纳米硫化铋概述 7

1.4.3  纳米硫化铋的光谱匹配 8

1.5  Bi2S3@ZIF-8异质结构 8

1.6  本课题的研究意义 9

2  实验部分 10

2.1  实验原料及实验仪器设备 10

2.1.1  化学试剂及原料 10

2.1.2  仪器设备 10

2.2  实验过程 11

2.2.1  硫化铋纳米棒的合成(Bi2S3) 11

2.2.2  Bi2S3@ZIF-8核壳异质结构的合成 11

2.3  表征手段 12

2.3.1  X射线衍射技术(XRD) 12

2.3.2  傅里叶红外光谱仪(FT-IR) 12

2.3.3  扫描电镜(SEM) 12

2.3.4  X射线光电子能谱分析(XPS) 12

2.3.5  N2吸附-脱附曲线测试(BET) 13

2.3.6  紫外-可见漫反射光谱(UV-vis-DRS) 13

2.3.7  荧光光谱测试(PL) 13

2.4  光催化性能测试 13

3  结果与讨论 15

3.1  XRD分析 15

3.2  FT-IR分析 15

3.3  SEM分析 16

3.4  XPS分析 18

3.5  N2吸附-解吸附等温线分析 19

3.6  光催化活性分析 20

3.7  UV-VIS光谱分析 22

3.8  光催化机理 23

4  结论 25

致  谢 26

参考文献 27

1 文献综述

1.1 引言