铁碳合金颗粒合成任务书

700摄氏度时核壳结构较小,它内核的高度跟直径相似,直径大概比高度略大,呈椭圆形,直径大约是1.5纳米。


题目:铁碳合金颗粒合成及其催化性能测试

一、课题的任务内容:

经由过程化学气相沉积合成搀杂布局的铁碳核壳纳米的颗粒,经由过程搀杂原子或官能团在薄壁石墨布局上造孔,为产化物/产品收支催化剂供应了大量的孔道,为高效催化供应了一种大概结果,钻研铁碳核壳纳米颗粒催化构效干系和瓜葛。

二、原始条件及数据:

通过X射线衍射和透射电镜表征,研究调节不同制备条件如温度、原料配比对渗碳体纳米复合颗粒的颗粒大小和石墨层壁厚的影响。探讨各制备方法合成的渗碳体纳米复合颗粒对催化构效关系影响。

三、设计的技术要求(论文的研究要求):

通过钻研调理并分开制备前提如温度、质料配比对渗碳体纳米复合颗粒的颗粒巨细和石墨层壁厚的印象。探讨各制备方法合成的渗碳体纳米复合颗粒对催化构效关系影响。

四、毕业设计(论文)应完成的具体工作:

尝试合成不同颗粒大小和石墨层壁厚的渗碳体纳米复合颗粒。在x射线衍射和高分辨电镜的测试结果,均证明形成纳米渗碳体条件下,使渗碳体纳米复合颗粒的比表面积达到40 m2 g-1以上,所制铁碳合金颗粒在催化合成气制低碳烯烃时,在转化率达到50%。

软硬件名称、内容及主要的技术指标(可按以下类型选择):

计算机软件 Origin、Word、Jade等

图纸

电路板

机电装置 完成以该材料为基体电极及扣式电池组装

新材料制剂 一种新型铁碳合金颗粒催化剂

结构模型

其他 所制铁碳合金颗粒在催化合成气制低碳烯烃时,在转化率达到50%。

五、查阅文献要求及主要的参考文献:

[1] Lee Y. J., Yi H., Kim W. J., Kang K., Yun D.S., Strano M.S., Ceder G., G., Belcher A. M., Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 2009, 324, 1051.

[2] Niu J. J., Wang J. N., Activated carbon nanotubes-supported catalyst in fuel cells. Electrochim. Acta,2008, 53, 8058.

[3] Joo S. H., Choi S. J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412, 169-172.

[4] Zhou J. H., He J. P., Zhao G. W., Ordered mesoporous carbon decorated with rare earth oxide as electrocatalyst support for Pt nanoparticles. Electrochem. Commun.,2008, 10, 76-79.

[5] [5] Chai G. S., Shin I. S., Yu J. S., Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells. Adv. Mater.,2004, 16, 2057-2061.

[6] [6] Han S. J., Yun Y. K., Park K. W., Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell electrodes. Adv. Mater., 2003, 15, 1922-1925.

[7] Xia B. Y., Wang J. N., Wang X. X., Niu J. J., Sheng Z. M., Chang H., Pak C., Synthesis and application of graphitic carbon with high surface area. Adv. Funct. Mater.,2008, 18, 1790-1798.

[8] Niwase K., Homae T., Nakamura K. G., Generation of giant carbon hollow spheres from C60 fullerene by shock-compression. Chem. Phys. Lett., 2002, 362, 47-50.

[9] Saito Y., Matsumoto T., Hollow and filled rectangular parallelopiped carbon nanocapsules catalyzed by calcium and strontium. J. Cry. Grow., 1998, 187, 402-409

[10] Du A. B., Liu X. G., Xu B. S. Synthesis and structure characterization of coal-based nano-structured onion-like fullerenes. J. Inorg. Mater., 2005, 20, 779-784

[11] Chlopek J., Czajkowska B., Szaraniec B., In vitro studies of carbon nanotube biocompatibility. Carbon, 2006, 44, 1106-1111.

[12] Smart S. K., Cassaday A. I., Lu G. Q., The biocompatibility of carbon nanotubes. Carbon, 2006, 44, 1034-1047.

[13] Abatemarco T., Stickel J., Belfort J., Fractionation of Multiwalled Carbon Nanotubes by Cascade Membrane Microfiltration. J. Phys. Chem. B, 1999, 103, 3534-3538.