级进模条料排样设计英文文献和中文翻译

Automation of strip-layout design for sheet metal work on progressive die


Strip-layout design is an important step in the planning stage of sheet metal work on pro-gressive die. It is an experience-driven activity and the quality of strip-layout is highly dependent on the knowledge and skill of die designers. This paper presents an expert system for automation of strip-layout design process. The proposed system is developed using the production rule-based expert system approach of Artificial Intelligence (AI). It comprises sixmodules to impart expert advices to the user for identifying sheetmetal oper-ations, sequencing of operations, selection of proper piloting scheme, number of stations,staging of operations on progressive die and selection of proper dimensions of stock strip.

Finally, the system models the strip-layout automatically in the drawing editor of AutoCAD using the output data files of other modules. Usefulness of the system is demonstrated through an example of an industrial component. The system is flexible and has low cost of implementation.

Strip-layout design has an extreme importance during the planning stage of progressive die design as the productivity,accuracy, cost and quality of a die mainly depends on the strip-layout (Tor et al., 2005). Traditional strip-layout design is manual, highly experience-based activity and therefore tedious, time consuming and error-prone (Li et al., 2002; Ridha,2003). Four decades earlier strip-layout problems were solved manually. The blanks cutting from cardboard were manip-ulated to obtain a good strip-layout. This trial and error procedure of obtaining suitable strip-layout with maximum material utilization is still being used in most of the small scale and even in some medium scale sheet metal industries worldwide. The quality of strip-layout achieved by using tra-ditional methods depends on the experience and knowledge of designers. On the advent of computer aided design (CAD) systems around 3 decades earlier, the process of strip-layout design was somewhat made easier and the design lead-time was reduced from days to hours. However, well-trained and experienced die designers were still required to operate these CAD systems. Most of the applications of CAD in strip-layout design are aimed mainly at achieving better material utiliza-tion by rotating and placing the blanks as close as possible in the strip. However, the strip-layout with maximum mate-rial saving may not be the best strip-layout, indeed the die construction may become more complex, which could offset the savings due to material economy unless a large num-ber of parts are to be produced. The system developed by Schaffer (1971) in 1971 reported to calculate the stresses due to bending moment on cantilevered die projections and if the system finds that the stress level is above the yield stress of die steel material, then the system distributes the cutting operations over several stages in order to keep the stresses

摘要:排样图设计是冲压工作的一个重要步骤。它是一种经验驱动的活动,排样图的质量高度依赖于模具设计者的知识和技能。本文介绍了一种用于条料排样图设计过程自动化的专家系统。该系统是利用人工智能(AI)的基于生产规则的专家系统方法开发的。它包括6个模块,向用户提供专家建议,用于识别冲压操作、操作顺序、选择合适的导正方案、工序数、进行连续模的操作以及选择合适的条料尺寸。最后,利用其他模块的输出数据文件,在AutoCAD绘图编辑器中自动对排样布局进行建模。通过一个工业部件的例子来演示该系统的有效灵活性和其低成本的优点。

1.介绍

在级进模模具设计的规划阶段,排样图设计具有极其重要的意义,因为模具的生产效率、精度、成本和质量主要取决于排样图。传统的排样图设计是手工的,经验丰富的活动,因此繁琐,耗时,容易出错。40年前,排样图问题都是手工解决。为了获得良好的排样图,从纸板上剪下的空白来计算和评估。通过这一尝试和修改错误的程序,以获得合适的排样图和最大的材料利用率,仍然在大多数小尺寸,甚至在一些中等规模的冲压工业中使用。在全球范围内。使用传统方法所获得的排样图的质量取决于设计者的经验和知识。在计算机辅助设计(CAD)系统出现的30多年前,排样图设计的过程变得更加容易,设计的前置时间也从几天缩短到了几个小时。然而,受过良好训练和经验丰富的模具设计师仍然需要操作这些CAD系统。CAD在排样图设计中的应用主要是为了实现更好的材料利用率,并尽可能地将坯料在条带中放置。然而,最节省材料的排样布局可能不是最好的排样图,实际操作中,模具结构可能会变得更加复杂,除非大量零件被生产出来,否则就会抵消材料经济的节省。 由Schaffer(1971)在1971年开发的系统,报告计算了悬臂式模切的弯矩,如果系统发现应力水平高于模具钢材料的屈服应力,然后系统分配切割操作几个阶段为了保持合理限度内的压力。该系统的一个局限性是,它不重视在执行操作过程中模具和穿孔的复杂性。Adachi et al.(1983)开发了一个集成CAD系统,用于设计级进模模具。系统输出也包括生成连续模的排样图,但是用户必须自己指定操作的顺序来获得排样图。Nee (1984a,b, 1985)开发了一些实验包,用于分析压机容量、盘条或带材的使用和成本因素,以解决板料和金属冲压坯的近似优化布置和嵌套问题。他所有的工作都集中在一般的排样布局上。设计过程和专家规则不涉及其他冲压操作,如穿孔、弯曲、成型等。由Duffy和Sun(1991)开发的系统采用了基于知识的系统方法,为级进模冲压模具生成排样图。该系统在IDL中实现,它是一种基于知识的系统语言。该系统具有产生排样图的能力;然而,它还没有实现,它在现实生活中的能力还没有经过测试。由Prasad和Somasundaram(1992)开发的计算机辅助模具设计系统(cadd)也有一个模块用于连续模的排样图。在这个模块中,根据输入参数选择模具类型。如果选择的模具是级进模,则根据在排样布局模块中所包含的规则进行条带开发。但是该系统的主要限制在于其主要支撑下料和穿孔操作。Singh和Sekhon(2001)开发了一种用于二维金属冲压布局的低成本模型。该软件基于AutoCAD和AutoLISP。该该系统能够对具有弯曲部分的圆、多边形和构件进行建模。还生成了备选的排样图,并进行了优化测试。该系统的主要限制是单工序冲压模具。Kim等人(2002)使用AutoLISP语言开发了一个系统。电气产品的系统决定了测序过程与复杂的冲孔和弯曲操作通过考虑几个因素对弯曲和采用模糊集theoryIt构造模糊矩阵计算模糊关系,构造模糊矩阵计算模糊关系价值和确定最优弯几个规则与模糊推理相结合。该系统的条形布局模块能够实现三维电子产品的弯曲和穿孔操作。该系统的主要局限性是它只处理连续模的弯曲和穿孔操作。文卡塔·拉奥(2004)提出了一种与金属模具冲压工作有关的排样图选择程序。该过程基于层次分析法(AHP)。但是,所开发的程序仅适用于简单的冲裁和冲孔模具。Chu et al.(2004)提出了一种数学技术,能够在级进模冲压模具设计中自动生成冲压序列。Agraph用于表示冲压件,并定义其冲压特性之间的关系。利用聚类算法将图划分为相互独立的顶点集。最后,对集群集进行排序,以给出最终的工作工序序列。该系统的软件原型的完成和开发仍在进行中,必须对具有不同形状的实际工业冲压件进行测试。