An adjustable roller conveyor module includes a first sup- port structure comprising first and second laterally spaced, longitudinally extending frame members.
ABSTRACT
An adjustable roller conveyor module includes a first sup- port structure comprising first and second laterally spaced, longitudinally extending frame members. A first roller set supported by the first support structure includes rollers rotatable about lateral axes equi-spaced in accordance with a predetermined roller-axis spacing. A second support struc- ture is carried between the first and second frame members of the first support structure for longitudinal reciprocation between fully retracted and extended positions. The second support structure supports a second roller set including rollers rotatable about lateral axes coplanar with the axes of the first roller set and equi-spaced in accordance with the predetermined roller-axis spacing. Selected rollers of the first roller set are removable to accommodate retraction of the second support structure. A set of extension apparatus is extendable beyond each end of the conveyor module and reciprocable between fully retracted and extended positions separated by a distance corresponding to at least one half of the roller-axis spacing.
Predetermined Roller Axis Spacing RS
ADJUSTABLE ROLLER CONVEYOR MODULE
BACKGROUND 5
1. Field
Although not so limited in its utility or scope, implemen- tations of the present invention are particularly well suited for incorporation in intra-facility transport systems such as
those used in moving mail pieces through various stages of processing in a mail processing facility, for example.
2. Brief Description of an Illustrative Environment and Related Art
Large-scale material handling operations frequently 15
involve the use of intra-facility transport systems such as conveyor belts and power roller conveyors. A module of a typical power roller conveyor includes a support structure defined by first and second laterally spaced, elongated frame members arranged in parallel and extending along a central 20
longitudinal axis. Extending between, and supported by, the parallel frame members is a plurality of rollers, each of which rollers rotates about an axis perpendicular to the central longitudinal axis and parallel to the axes of other rollers among the plurality. The axes of the rollers are 25
typically spaced apart in accordance with recognized industry-standard specifications. For instance, the roller spacing (i.e., distance between the roller axes) of a typical power roller conveyor in a mail-processing facility is 3 and second conveyor modules are arranged in series between units A and B. Each conveyor module is ten times the fixed roller spacing (frs) plus a constant “c” in length and the distance between units A and B is 20 frs+2 c. In FIG. C, unit B' has replaced unit B and is set in place a distance equal to 20 frs+2 c+d from unit A, thereby leaving a gap of length d between the second conveyor module and unit B'.
Situations such as the one illustrated in FIGS. B and C result in dilemmas presenting choices such as adjusting the position of the replacement equipment and changing the roller spacing between two or more rollers near one or both ends of the roller conveyor module. Moving the piece of equipment is often not practical for any of various reasons. A single piece of mail-processing equipment, for example, can measure well in excess of one hundred feet long and weigh several tons. Moreover, these machines are frequently situated between two sets of conveyor apparatus, rendering movement away from one set of conveyor apparatus toward the other impossible. Adjusting the roller spacing near the end of a roller conveyor module presents difficulties of its own. For instance, the frame members may require cutting to shorten them or the addition of custom-cut lengths to lengthen them, new holes need to be bored in the frame members and the rollers mounted in the new holes. An obstacle other than the actual customization of the conveyor module is that changes in the spacing between rollers require drive belts or o-rings of different, and often, non-standard sizes thereby creating a need for customized o-rings.