The advanced machining methods and techniques are still under in- vestigations and their implementation in actual robot controller is either complex or inadequate due to constrained integration perfor
The advanced machining methods and techniques are still under in- vestigations and their implementation in actual robot controller is either complex or inadequate due to constrained integration performance (e.g. low sampling rates, higher time lags etc.).
3. Description of the Hephestos system
3.1. Overview
A flexible robotic-machining cell for large-parts manufacturing has been developed (Fig. 2). This cell allows machining of large parts (such as propellers blades, and motor blocks) mainly for ship-building and aerospace applications. The novel cell has been designed to integrate the following system development steps: planning using CAD/CAM sys- tems, automatic programming and programme optimisation for specific robot manufacturing (robot signature), sensory systems, advanced con- trol techniques and human-machine interfaces and interaction (for iter- ative reprogramming).
The software architecture is shown in the Fig. 3. It is composed by the following parts:
• Robot Controller: supplied by the manufacturer. In this case, it used a Comau C4GOpen controller.
• Sensor Controller: it is in charge of localising objects in the robot’s working area. The input for this module is 2-D profiles from the laser profilers and robot poses from the robot controller and the output is the user coordinate frame for the simulation tool.
• External Real-time controller: it is the main controller where the impedance-control and path-compensation algorithms reside.
• Programming and Simulation Interface (running in a PC): it is based on the EASY-ROB simulation software, which runs to provide an in- terface for configuration and simulation. EASY-ROB1 is a planning
and simulation software for manufacturing plants with robot work cells.
• HMI (running in an Android tablet): this is the main human-robot in- terface, where the operator can control and program the robot from a very-easy-to-use perspective.文章信息
关键词:机器人;加工;小批量;工业的;HIMI;顺应性控制;路径规划
摘要:通过提高当前最先进的技术,硬质材料可以通过标准工业机器人进行成本有效的加工。结果表明,即使是具有特定机器人技术的硬质金属,新的硬质金属工具也可以通过标准的工业机器人进行加工,并采用改进的位置控制方法和增强的柔顺控制功能。这也表明,补偿弹性机器人误差的新方法,基于模型的先进控制,以及新的负担得起的传感器和人机界面中的应用,可以大大提高加工任务的机器人的性能和适用性的机器人。本文结合安全机器人在人类机器人与协作中的应用,为工业机器人在中小企业和大型工业中应用工业机器人提供了坚实的背景。计划的短期和长期的结果的开发,将大大增加未来的机器人在加工操作的使用。
1.介绍
硬质材料加工吸引了大量的关注,从先进的产业,特别是欧洲的汽车、航空航天、生物医药等行业。然而,现有的技术未能为这些行业提供一个符合成本效益的解决方案,以适应小批量生产的大型和复杂形状的产品。
到目前为止,工业上使用的工业机器人只有3%左右用于机械加工。这与工业机器人加工应用的市场潜力和效益不相符合。广泛认为,具有灵活性、工作范围大和多站点能力的内在的5轴及以上的工业机器人的加工能力是一个灵活的解决方案,相比于采用传统的数控机床,它能够使用户能够扩大一个价格点的机械加工应用的竞争优势。允许用户扩展加工的应用范围在价格竞争,采用以传统的CNC(计算机数控)机床。随着近期动态成本的降低和性能优化的现代工业机器人模型,一个类似的机器人解决方案的价格是典型的上1/5-1/3 数控机床的成本。两个或两个以上的机器人在灵活的多站和多工作的机器人加工单元的整合本投资显著低于采用大型数控机床。基于几项研究[1,2],广泛采用机器人加工的两个基本技术限制是机器人精度和刚度不够,以及缺乏有效的将CAD(计算机辅助设计)模型转换为机器人运动的编程工具。关于机器人,材料去除是工业机器人应用领域中应用最少的领域之一[ 3 ]。水射流和激光切割通常是自动控制的,以及较软的材料(木材、氨基甲酸酯、机械研磨砂石、铝或铸铁),而不是硬材料。机器人刚度不足(大约低于数控机床的100倍)通常被认为是硬材料机器人加工的一