(2) the influence of roasting temperature on the catalytic performance of fe-co-o was studied. Results show that by 250 ℃ calcination of catalysts with high specific surface area, Co3 + / Co2 + hole
(2) the influence of roasting temperature on the catalytic performance of fe-co-o was studied. Results show that by 250 ℃ calcination of catalysts with high specific surface area, Co3 + / Co2 + hole ratio and oxygen content, and show the excellent performance of the catalytic oxidation of CO. Fe3Co16Ox - 250 catalyst respectively in 101 ℃ (at the containing 3-10 PPM H2O) and 70 ℃ (0.6 vol. % H2O) will CO oxidation, completely under the condition of containing 3.1% H2O, completely in 90 ℃ can make CO oxidation, and maintain more than 1 months activity is not reduced.
(3) the effect of water content and CO concentration on the catalytic activity of fe-co-o was studied. The results showed that the 22fe-co-o catalyst was more sensitive to the change of Co concentration under the condition of water vapor deficiency (3-10ppm H2O) than under the humid condition (0.6vol. Surface adsorption of OH- and CO will generate carbonate ions (CO* + OH* to COOH* + *, * adsorption site). The presence of surface polymers can inhibit the adsorption of water on the active center of catalyst.
(4) the influence of polymer layer on the catalytic performance of fe-co-o was studied. Research shows that the possible structure of the polymer is -(ch2ch2-o-cocoo -)n. Different calcination temperature will affect the thickness of the polymer surface layer and content, the existence of the polymer layer inhibits nanoparticles grew up, and significantly improve the water resistance of the catalysts, thus improve Co - Fe - O the catalytic properties of composite metal oxides.
(5)Adding nitric acid on the original basis, nitric acid corrodes the surface of catalyst, producing more active sites and high oxygen vacancy, so as to obtain better catalytic performance
Key words: fe-co composite oxide; Nano-catalysts coated with polymer layer; Water resistance; CO oxidation; Catalyst preparation
目录
第1章 引言 6
1.1 研究背景 6
1.2 非贵金属催化剂 7
1.2.1 Cu及Ce基催化剂与CO氧化 7
1.2.2 Co基催化剂与CO氧化 9
1.3 本课题的主要研究内容 11
第2章 实验部分 11
2.1 实验试剂和仪器 11
2.1.1 实验试剂 11
2.1.2 实验用气体 12
2.1.3 实验仪器 12
2.2 催化剂的制备 13
2.2.1 草酸乙二醇辅助固相法 13
2.3 催化剂表征 13
2.3.1 热重差热分析 13
2.3.2 氮气低温吸/脱附 13
2.3.3 X射线晶体衍射 13
2.3.4 透射电子显微镜 14
2.3.5 X射线光电子能谱仪 14
2.3.6 H2程序升温还原 14
2.3.7 原位红外漫反射光谱 14
2.3.8 傅里叶红外光谱 14
2.3.9 CO程序升温脱附 14
2.3.10 O2程序升温脱附 15
2.3.11 动力学数据的测定 15
2.4 催化剂评价 15
2.4.1 催化剂活性评价 15
第3章 实验结果与讨论 16
3.1 实验结果与讨论 16
3.1.1 Fe含量对催化剂性能的影响 16
3.1.2 草酸含量对催化剂性能的影响 18
3.1.3 乙二醇用量对催化剂性能的影响 19
3.2 表征结果与讨论 20
3.2.1 XRD 20
3.3.2 低温N2吸附 22
3.3.3 XPS 23
3.3.4 CO-TPD 25
3.3.5 O2-TPD 27
3.3.6 TEM 和 TG 29
3.3.7 焙烧温度对催化剂性能的影响 30
3.3.8 催化剂的稳定性及抗水性研究 32
第四章 硝酸氧化催化剂对CO氧化的影响 33
4.1引言 33
4.2 实验部分 33
4.2.1 实验中所用试剂 33
4.2.2 实验中所用气体 34
4.2.3 实验中所用仪器 34
4.2.4 硝酸乙二醇辅助固相法 35
4.3 催化剂活性评价 35
4.4 硝酸用量对催化剂性能的影响 35
第五章 总结 36
致谢 39
参考文献 40
第1章 引言