本实验中制备的云母/SRO/PZT/Pt电容器展示出了优异的抗弯曲性能和抗疲劳性能,在1.4mm和2.2mm的极小弯曲半径下以及在半径2.2mm下弯曲104次仍然能够保持优良的铁电性能。
摘要:本文中将详细介绍云母/SRO(SrRuO3)/PZT(PbZr0.52Ti0.48O3)/Pt薄膜电容器的生长方法和详细的环境参数要求,尤其是晶粒取向高度一致的PZT薄膜的生长。云母/SRO/PZT/Pt铁电薄膜电容器的柔性性能是本文研究的重点。
本文采用脉冲激光溅射沉积技术和磁控溅射技术在厚度10μm的云母薄片表面依次生长SRO底电极、PZT铁电薄膜和Pt顶电极结构,薄膜晶粒取向表现出高度一致,生长质量十分优异;不同温度下的铁电测试表明该电容器结构具有良好的耐热性能;弯曲性能测试表明其具备优异的抗弯曲性能,以半径1.4mm和2.2mm弯曲下其铁电性能和铁电畴的极化方向保持较好,以半径2.2mm弯曲104后铁电回线变化不大,满足器件工作的基本要求。
生长在透明柔性云母衬底上的铁电薄膜在以毫米级半径下弯曲104次之后仍然能够保持优异的铁电性能,并且具有一定的耐高温性,能够满足下一代柔性可穿戴设备的基本要求,并且制备成本较低,有大规模应用的潜力。
关键词柔性铁电薄膜存储器可穿戴设备
毕业设计说明书外文摘要
Title A flexible bent perovskite oxide ferroelectric thin film memory
Abstract:In this paper, the growth method and environment of mica/SRO/PZT/Pt capacitor structure are introduced in detail, especially the growth of PZT film with uniform grain orientation. The flexibility of mica/SRO/PZT/Pt ferroelectric thin film capacitors is the focus of this paper.
In this paper, SRO bottom electrode, PZT ferroelectric thin film and Pt top electrode structure are grown on the surface of 10 μm mica flakes by pulse laser deposition and magnetron sputtering. The grain orientation of the films is highly consistent and the growth quality is excellent. The bending performance test shows that it has excellent bending resistance, and its ferroelectric performance and the direction of polarization of ferroelectric domains remain well while being bent at the radius of 1.4 mm and 2.2 mm and after being bent for 10000 times at the radius of 2.2 mm. The hysteresis loop does not change much, which can meet the basic requirements of device.
The ferroelectric thin film structure grown on a transparent flexible mica substrate is capable of maintaining excellent ferroelectric properties after being bent 10000 times at a millimeter radius and has a high temperature resistance to meet the basic requirements of the next generation of flexible wearable device. And in addition to the low cost of preparation, it has the potential of large-scale application.
Keywords Flexible Ferroelectric thin film Memory Wearable device
目录
1绪论 1
1.1研究背景 1
1.2铁电材料介绍 2
1.2.1铁电体 2
1.2.2铁电薄膜 3
1.2.3铁电存储器 4
1.3研究内容 5
2.实验方案设计与研究方法 7
2.1铁电薄膜的制备方法 7
2.1.1溶胶凝胶法 7
2.1.2磁控溅射法 7
2.1.3脉冲激光沉积技术 7
2.2制备工艺 8
2.3铁电存储器性能测试 9
2.3.1结构性能测试 9
2.3.2电学性能测试 9
2.3.3柔性性能测试 9
2.4主要实验仪器工作原理 9
2.4.1脉冲激光沉积系统(PLD) 9
2.4.2磁控溅射仪 11
2.4.3AFM和PFM 11
2.4.4XRD衍射仪 13
2.4.5铁电测试仪 14
3.柔性铁电存储器的柔性和铁电性能测试 15
3.1结构性能分析 15
3.2铁电性能分析 18
3.3柔性性能分析 19
3.4本章小结 27
结论 28
4.1实验结论 28
4.2展望 28
致谢 29
参考文献 30
1绪论
1.1研究背景
自从上世纪六十年代摩尔定律被提出之后,一直支配着半导体行业飞速发展。不仅半导体器件的集成度越来越高,性能越来越好,而且种类也愈发丰富。电子设备的设计和制造越来越人性化和专业化,为使消费者获得更好的体验感,柔性可穿戴设备应运而生。从最开始的尝试,例如曲面屏手机、曲面屏电视,到极具未来感的可穿戴显示屏。从固定的弯曲状态到任意的弯曲穿戴,柔性可穿戴设备将会给人们的日常生活带来更好的交互体验感和极大的方便,如图1.1。柔性可穿戴设备的制造,既要保持原来刚性设备的优异性能,又要保证在大量复杂的弯曲状态下,维持设备的基本性能不发生损坏或明显下降。