The position and orientation of the end-effector in terms of given joint angles is calculated using a set of equations and this is forward kinematics. This set of equations is formed using DH paramete
The position and orientation of the end-effector in terms of given joint angles is calculated using a set of equations and this is forward kinematics. This set of equations is formed using DH parameters obtained from the link coordinate frame assignation. The parameters for the manipulator are listed in Table 4.5.1, where 𝜃 is the rotation about the Z-axis, αrotation about the X-axis, d transition along the Z-axis, and transition along the X-axis.
Table 2: DH kinematic parameter table
Axis Type Joint angle θ in degree Link length di in m Joint Offset ai in m Twist angle αi in radian
1 Shoulder 𝜃1 0.13 0 0
2 Elbow 𝜃2 0.11 0 0
3 Base 𝜃3 0.07 0 0
Giving these information to RoboAnalyze Software for finding the joint angle (θ) for different positions of robotic arm. Following results are obtained:
Table 3: Joint angles for different positions of end effector
Sr. No. Positions in case 1 in Case 2
Where case 1 and case 2 are two different trajectory of robotic arm which is suitable for our project application. We can select any one of them. Some Graphs output come out from RoboAnalyzer Software by providing initial positions and final positions in term of joint angle as below:
Joint Value Vs Time Joint Velocity Vs Time
Joint Acceleration Vs Time Joint Torque Vs Time Figure 10: Graphs obtained by RoboAnalyzer Software.
5. FE ANALYSIS
Ansys software uses the displacement formulation of the finite element method to calculate component displacements, strains, and stresses under internal and external loads. The geometry under analysis is discretized using tetrahedral (3D), triangular (2D), and beam elements, and solved by either a direct sparse or iterative solver. SOLIDWORKS Simulation also offers the 2D simplification assumption for plane stress, plane strain, extruded, or axis symmetric options. Ansys Software can use either an h or p adaptive element type, providing a great advantage to designers and engineers as the adaptive method ensures that the solution has converged.
摘要:机器人是机器人系统的基本运动子系统组件,用于对物体进行定位,定向,使机器人可以执行有用的任务。该项目的主要目标是设计和实施4自由度拾放机器人手臂。这个项目可以在操作中自行操作,陈述简单的任务,如抓取,提升,放置和释放。在这个项目中,重点是四自由度铰接臂。铰接臂由旋转接头组成,允许相邻接头之间的角运动。该项目使用四个伺服电机来执行四个自由度(4自由度)。机器人手臂可以通过多种尺寸进行评估,例如扭矩,有效载荷,速度,范围,重复性和成本等等。机器人操纵器旨在执行所需的移动。他们的控制器设计同样重要。机器人手臂由串行伺服控制器电路板控制。用于伺服电机驱动的控制器是ATmega16开发板。
关键词:四自由度机械臂、机械手、夹持器、伺服电机、大型16。
简介
机器人领域起源于科幻小说。机器人这个词来源于捷克语“robota”,意思是1920年的强迫劳动。在工业机器人技术的现代技术开始之前又过了40年。今天,机器人是由计算机控制的高度自动化的机械操纵器。机器人可能看起来像人或动物或简单的机电设备。机器人可以在人的直接控制下(例如航天飞机的机器人手臂)或在编程计算机的控制下自主地动作。机器人可用于执行对人类直接实施(例如核废料清理)而言过于危险或困难的任务,或者可能用于机器人比使用人类更便宜地执行重复任务的自动化任务(例如,汽车生产),或者可以用于自动化机器人而不是人类(材料处理,材料转移应用,机器装载和卸载,加工操作,装配和检查)应该更精确地执行的盲目重复性任务。
过去二十年来,机器人应用领域取得了重大进展。预计未来几年将有更多的应用出现在太空探索,战场和日常生活中的各种活动中。机器人是一种机械设备,根据预先定义的程序或一套通用指导方针和直接人为监督来执行自动化任务和动作。这些任务要么取代或加强人类的工作,例如制造,收缩或操纵重型或有害物质。机器人是自动化柔性制造系统中不可或缺的一部分,目前需求量很大。机器人现在不仅仅是一台机器,因为随着成本劳动力的工资和客户的需求,机器人已经成为未来的解决方案。尽管获得机器人系统的成本相当昂贵,但由于当今的快速发展以及对IS0标准的高质量要求,人类不再能够满足这种要求。由于产品质量标准的不断提高和提高,未来机器人的研发正在快速发展。