采用熔盐法制备了Li5.96Al0.2La3Zr1.69W0.25Y0.06O12 固体电解质。研究了不同锂源对所制备的固体电解质的离子电导率、相对致密度、收缩率等性能的影响
摘要:本文采用熔盐法制备了Li5.96Al0.2La3Zr1.69W0.25Y0.06O12固体电解质。研究了使用不同锂源,不同预烧温度对所制备固体电解质的离子电导率、相对致密度、收缩率等性能的影响,并使用XRD,EIS,SEM等方法对所制得的固体电解质样片进行表征。结果表明:当使用碳酸锂和氢氧化锂作为锂源时,电解质样片的离子电导率最高,为3.09×10-4 S·cm-1,其相对致密度和收缩率分别为86%,10.7%;XRD图显示,用该锂源制备的固体电解质为纯的立方相,SEM图显示,用该锂源制备的固体电解质晶粒之间相互融合,晶界不明显,其表面较为平整光滑。预烧温度为900℃时所制备的电解质片的离子电导率最高,为2.92×10-4 S·cm-1,其相对致密度和收缩率分别为86%,13.8%;XRD图显示,在该预烧温度下所制备的固体电解质为纯的立方相,SEM图显示,在该预烧温度下所制备的固体电解质表面相对平整且光滑,晶界空隙较小,晶粒间紧密度较高。
关键词 :锂离子电池;无机固态电解质;相对致密度;熔盐法
Study on Preparation of Aluminium-antimony-strontium -doped Lanthanum Niobate Electrolyte by Molten Salt Method
Abstract:In this paper, Li5.96Al0.2La3Zr1.69W0.25Y0.06O12 solid electrolyte was prepared by molten salt method. The effects of different lithium sources and different calcination temperatures on the ionic conductivity, relative density and shrinkage of the prepared solid electrolytes were studied. The solid electrolyte samples prepared by XRD, EIS and SEM were studied. Characterization. The results show that when lithium carbonate and lithium hydroxide are used as the lithium source, the ionic conductivity of the electrolyte sample is the highest, which is 3.09×10-4 S·cm-1. The relative density and shrinkage of the electrolyte sample are 86% and 10.7%, respectively. The XRD pattern shows that the solid electrolyte prepared with the lithium source is a pure cubic phase. The SEM image shows that the solid electrolyte grains prepared with the lithium source are fused to each other, the grain boundary is not obvious, and the surface is relatively smooth. The ionic conductivity of the prepared electrolyte sheets was the highest when the calcination temperature was 900°C, which was 2.92×10-4 S·cm-1. The relative densities and shrinkage rates were 86% and 13.8%, respectively; XRD patterns showed that the solid electrolyte prepared under the calcination temperature is a pure cubic phase. The SEM image shows that the prepared solid electrolyte surface is relatively smooth and smooth at the calcining temperature, the grain boundary voids are small, and the tightness between grains is high.
Keywords:Lithium-ion battery;Inorganic solid electrolyte;Relative density; molten salt method
目录
1.绪论 1
1.1 引言 1
1.2锂离子电池 1
1.2.1锂电池的发展 1
1.2.2 锂离子电池工作原理 2
1.2.3锂离子电池的优势与劣势: 3
1.3 锂离子电池电解质的分类 3
1.3.1 硫化物固体电解质 3
1.3.2 氧化物固体电解质 4
1.3.3 钙钛矿型固体电解质 4
1.3.4 LISICON型固体电解质 5
1.3.5 NASICON型固体电解质 5
1.3.6 LLZO石榴石型固体电解质 6
1.4 LLZO系固体电解质的制备方法 7
1.4.1高温固相合成法 7
1.4.2溶胶凝胶法 8
1.4.3场辅助烧结法 8
1.4.4熔盐法 8
1.4.5其他制备方法 8
1.5本文的主要研究内容 8
2.实验部分 9
2.1 实验试剂及仪器设备 9
2.2工艺步骤与流程 9
2.2.1工艺步骤 10
2.2.2工艺流程 11
2.3 Li5.96Al0.2La3Zr1.69W0.25Y0.06O12固体电解质的制备 11
2.3.1不同锂源对Li5.96Al0.2La3Zr1.69W0.25Y0.06O12固体电解质的制备 11
2.3.2不同预烧温度对Li5.96Al0.2La3Zr1.69W0.25Y0.06O12固体电解质的制备 11
2.4 产物性能表征 12