由于缺乏丝状微生物,活性污泥B反应器完全依靠微生物胞外聚合物,以保持其完整性。可能在实验过程中,受到较高浓度的Cr(VI)影响的细胞外聚合物后
由于缺乏丝状微生物,活性污泥B反应器完全依靠微生物胞外聚合物,以保持其完整性。可能在实验过程中,受到较高浓度的Cr(VI)影响的细胞外聚合物后,会导致絮凝物的分离。
图.3在实验过程中SVI值在活性污泥处理厂A(对照组)和B(实验)的比较。
图.4实验期间在活性污泥处理厂A(对照组)和B(实验)的出口悬浮物浓度。
3.5对活性污泥中微生物群落的影响
在实验开始时,两个活性污泥系统的微生物是相似的,含有柄纤毛虫,自由游动纤毛虫和轮虫几个物种。和预期一样,使用模拟底物使微生物变异性逐渐减少。整个实验中,控制系统中的污泥中包括原生动物(钟虫属,盖虫属)和轮虫。另一方面,添加1 mg L-1的Cr(VI)导致轮虫的逐渐消失和的自由游动的纤毛虫在实验系统中的增加(B反应器)。抗絮凝阶段开始于添加3 mg L-1的Cr(VI)时,至5 mg L-1的Cr(VI)时,浓度进一步的增加导致活性污泥原虫的完全冲出。
有报道称,在各种重金属的存在时,原生动物物种在减少[38,39]。原生生物的重要性和作用在活性污泥的净化过程中是有据可查的[29]。这些微生物从废水中除去非絮凝细菌并通过产生粘液[17]而有助于生物絮凝。
关于Cr(VI)对活性污泥工艺中高等微生物的的影响,应该提及的是,活性污泥系统接收模拟底物,可能不会具有较强的恢复能力。尽管如此,上述观察揭示了在Cr(VI)存在的情况,不同微生物的敏感性。
4. 结论
本研究的结果表明,硝化微生物比异养微生物对Cr(VI)更敏感。即使是0.5 mg L-1的Cr(VI)便会显著抑制硝化过程,而只有浓度高达5 mg L-1的Cr(VI)引起CODdis去除略有下降。Cr(VI)的浓度为1 mg L-1引起了活性污泥中轮虫的消失,原生动物也受到影响。
研究的Cr(VI)对活性污泥絮凝物的尺寸和结构的结果表明,Cr(VI)会影响丝状微生物的丰度。Cr(VI)停止投加后,硝化作用会部分恢复。最后,在持续48h的5 mg L-1 Cr(VI)的冲击负荷下运行,以研究其对硝化作用的影响,有机物的去除和污泥沉降并没有受到明显抑制。
5. 致谢
Abstract:The effect of hexavalent chromium, Cr(VI), addition on various operating parameters of activated sludge process was evaluated. To accomplish this, two parallel lab-scale continuous-flow activated sludge plants were operated. One was used as a control plant, while the other received Cr(VI) concentrations equal to 0.5, 1, 3 and 5mgl-1. Cr(VI) concentrations of 0.5mgl-1 caused significant inhibition of the nitrification process (up to 74% decrease in ammonia removal efficiency). On the contrary, the effect of Cr(VI) on organic substrate removal was minor for concentrations up to 5mgl-1, indicating that heterotrophic microorganisms are less sensitive to Cr(VI) than nitrifiers. Activated sludge floc size and structure characterization showed that Cr(VI) concentrations higher than 1mgl-1 reduced the filaments abundance, causing the appearance of pin-point flocs and free-dispersed bacteria. Additionally, the variability of protozoa and rotifers was reduced. As a result of disperse growth, effluent quality deteriorated, since significant amounts of suspended solids escaped with the effluent. Termination of Cr(VI) addition led to a partial recovery of the nitrification process (up to 57% recovery). Similar recovery signs were not observed for activated sludge floc size and structure. Finally, shock loading to the control plant with 5mgl-1 Cr(VI) for 2 days resulted in a significant inhibition of the nitrification process and a reduction in filamentous microorganisms abundance. r 2002 Elsevier Science Ltd. All rights reserved.
Keywords: Toxicity; Wastewater; Nitrification; COD removal; Sludge settling
1. Introduction