关于极限符号可交换性的讨论(2)

The problem of the order of limit operation and derivation operation,we want to make sure that the limit and the derivative can be exchanged and the equation is sure.It is usually necessary that "the


The problem of the order of limit operation and derivation operation,we want to make sure that the limit and the derivative can be exchanged and the equation is sure.It is usually necessary that "the derivative function  is uniformly convergent on the interval " to guarantee the derivability of the limit function. Similarly, this sufficient condition is difficult to verify in practice.So, if we can find the conditions that are going to be reduced so that the limit operation and the derivation can be switched in order and that's what we need to talk about.

The problem of the order of repeated limit exchange of binary functions.We want to make sure that the two quadratic limit is equal and the equation  is sure,  usually there are two ways to do it.The first is to ensure that the double limit  of the binary function exists.The second is to make use of the condition of "to arbitrary , existence , and about  uniform convergence" to ensure the existence of two quadratic limits.Then get to the two quadratic limits are equal.Compared with the second method, it is easier to determine the existence of the double limit.But the existence of the double limit is only a sufficient condition for the exchange of the second limit order, not the necessary condition.Therefore, when the double limit does not exist, whether there are other conditions in addition to the uniform convergence can guarantee the exchangeability of the quadratic limit, which is also worth discussing.

Key word: Riemann integral;limit;Derivation operation;The iterated limit;Interchangeability;Uniform convergence;continuity;integrability

目录

引言 1

第一章 对积分运算和极限运算可交换问题的讨论 2

第二章 对求导运算和极限运算可交换问题的讨论 11

第三章 对累次极限交换问题的讨论 14

第四章 问题展望 17

参考文献 19

致谢 20

引言

《数学分析》是数学专业基础课程之一,它所体现的分析数学思想、逻辑推理方法、处理问题的技巧,在整个数学学习和研究中起着至关重要的作用,是数学专业学生知识结构中不可或缺的组成部分。极限思想是近代数学的一种重要思想,微积分的发展是建立在极限理论发展之上的,而微积分对现代文明的贡献之大毋庸置疑,由此极限的重要性可见一斑。极限交换在数学分析中,是一个极其重要的概念,包括多元函数中的二重极限和两个累次极限之间的关系、函数项级数的逐项求积分、二重积分化成二次一重积分、广义积分的次序交换、二元函数求导和积分顺序交换等等。我们在学习这些内容时经常觉得困难[1],造成这种情况的原因有两个。第一,我们对有限运算和极限运算的差别理解不深;第二,很多时候,我们搞不清楚极限交换的具体条件,两个原因中第二个是最令我们感觉到困扰的。比如极限运算与积分运算交换次序的条件是函数列在闭区间上一致收敛,并且每一个函数在闭区间上连续。对于我们而言,上述条件中的函数列的一致收敛性是较难证明的,因此能否找到其它容易判断的条件可以替代函数列的一致收敛性是很重要的。本文主要针对本科生学习数学分析中的主要内容,对极限交换中:积分运算和极限运算次序交换、求导运算和极限运算次序交换、累次极限次序交换,这三种主要情况的交换条件进行分析讨论和详细阐述,并且以复旦大学数学系编写的“十二五”规划教材《数学分析第三版》为基础研究对象,结合学生学习实际情况,辅助极限交换相关理论研究文献,得到了一些简单的结论。

第一章 对积分运算和极限运算可交换问题的讨论

众所周知,在黎曼积分[2]的范围内,积分运算和极限运算顺序交换并非对所有函数都适用,这里主要是两种情况,一是函数列的极限不可积导致无法交换,二是积分与极限交换前后结果不一致。关于这两点我们可以通过下面两个例子来说明。例1 设 是 上的全部有理数组成的数列,定义函数